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LETTER TO THE EDITOR 

Dipolar interaction in random-field systems 
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Jiilich, Federal Republic of Germany 

Received 21 March 1988 

Abstract. It is shown that dipolar interaction breaks the universality of the low-temperature 
and critical behaviour between the random-field king model (RFIM) and the diluted 
antiferromagnet in an external field ( DAFF). For the RFIM, dipolar interaction changes 
the roughness and the critical exponents; in particular, the upper critical dimensionalities 
are diminished by one. Dipolar interaction exerts no influence on these exponents in the 
DAFF, nor on the lower critical dimensionality d,  = 2 of both systems. 

In many physical systems one encounters quenched random impurities which act as 
a local symmetry-breaking field on the order parameter. This occurs, for example, in 
diluted antiferromagnets subjected to a homogeneous external field ( DAFF), in 
monolayers adsorbed on an impure substrate, impure structurally ordered systems 
(e.g., ferroelectrics), binary mixtures in a porous medium, etc. Most of the macroscopic 
physical properties related to the disorder are supposed to be described by the 
random-field Ising model (RFIM) [l], (for a review see [ 2 ]  and references therein). 
When only short-range interaction is taken into account, it has been shown that the 
random field destroys the long-range order of the system in d S d, = 2 dimensions. 
However, in many of the systems under experimental investigation long-range dipolar 
interaction is expected to play a role. It is the aim of the present letter to elucidate 
its influence both on the static equilibrium properties of these systems as well as on 
the domain growth in metastable configurations. It turns out that the dipolar interaction 
breaks the universality of the RFIM and DAFF. 

Following the original ideas of Imry and Ma [ l ]  we consider first the stability of 
the ferromagnetic up-spin state with respect to the formation of an almost spherical 
down-spin domain of linear size R in the RFIM. The surface and Zeeman energies of 
such a configuration are uRd-’  and -MHRd”,  respectively. The surface tension U is 
proportional to the exchange constant J. H denotes the strength of the random field, 
with H << J throughout. The magnetisation M is assumed to be homogeneous 
everywhere apart from a change of the sign in the domain. Dipolar interaction gives 
a third contribution W, which results from the difference of the dipolar energy in the 
domain and in the homogeneous state. In d = 3 dimensions, W is given by [3] 
W3=;(2M)’NV where V denotes the volume and N the demagnetisation factor of 
the domain ( N  =$T for a sphere). In order to generalise W to arbitrary dimension- 
alities, let us consider three-dimensional dipolar interactions (vanishing as R-’) 
between dipoles arranged in a d-dimensional space. For an almost spherical domain 
of radius R, one then obtains W, ( R )  = gM2R2d-3  where R Z d  results from the integration 
over dipoles inside and outside of the domain. The shape-dependent coefficient g is 
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always positive in d = 3 whereas for d = 2 g > 0 ( g  < 0 )  for M parallel (perpendicula a) 
to the two-dimensional plane. The total energy of the domain is then 

E ( R )  = uRd-‘  - H M R d / 2 + g M 2 R 2 d - 3 .  ( 1 )  

Here and below we drop all numerical coefficients. For 2 < d the Zeeman term increases 
slower than the exchange and the dipolar term, i.e. E ( R )  > E ( 0 ) .  For d < 2 ,  where 
domain formation is favoured by the Zeeman term, the dipolar interaction can be 
neglected because of its fast relative decay on large scales. In d = 2 gM2 just renor- 
malises the bare surface tension U + gM2 + &. Additional renormalisation of U due to 
random fields leads to a vanishing U and hence to a stabilisation of the domain state 
quite analogous to the non-dipolar case [4]. Thus d, = 2 as in the non-dipolar case. 

Two complications have not been taken into account so far. 
(i)  In general domains must not be spherical and the dipolar interaction will favour 

rotational ellipsoids with the long axis parallel to M because of the low values of the 
demagnetisation factor N. Denoting the two principal radii of the ellipsoid by R ,  and 
R ( R I  >> R ) ,  N - ( R /  RI)*[ln(2Rl/ R )  - 11 in d = 3 dimensions. Keeping R fixed, the 
domain energy is minimised if 

Thus (metastable) domains will be preferentially cigar shaped with the long axis parallel 
to M. Repetition of the energy estimate (1) for cigar-like domains with R I  = y1/2Rd’2  
( y - g M 2 / u )  yields a different expression for E ( R )  but again d, = 2 .  

(ii) In order to close the Imry-Ma argument we have to consider a multidomain 
state. It is now difficult to estimate the energy since the domain pattern will be highly 
correlated due to the long-range character of the dipolar interaction. Nevertheless, 
we believe that E ( R ) / R d ,  equation ( l ) ,  gives the correct scale dependence of the 
energy density. However, it is conceivable that for d, s 2 the dipolar interaction leads 
to a kind of antiferromagnetic ordering of domains quite analogous to those arising 
in dipolar ferromagnets [SI. 

Next we consider the Imry-Ma argument for DAFF, which are believed to be good 
realisations of the RFIM [ 6 ] .  For a region of size R the dilution leads to an excess of 
occupied sites on, say, the A lattice, of the order of Rd”. Applying an homogeneous 
external field and neglecting effects from the boundary of this region, the spins on the 
A lattice will adjust parallel to the field. In a neighbouring region with excess of 
B-lattice sites, B spins will be parallel to the field. The average magnetisation in both 
domains is m( R )  = n’/2MR-d’2H/IH( where M, H and n denote the sublattice magneti- 
sation, the external field and the concentration of non-magnetic ions, respectively. 
Considering the change of the dipolar interaction due to the creation of domains, we 
have to take into account that the multidomain state has an almost homogeneous 
magnetisation m( R )  whereas in the corresponding domain-free state m( R )  fluctuates 
in sign by moving between regions of order R. Thus the multidomain state has a lower 
dipolar energy given by wd, but with M replaced by m( R )  and g by -cg with c > 0. 
Thus 

& R ) =  uRd-1-n1/2HMRd12-cgnM2Rd-3+”. (3 1 
From our dimensional analysis of the R dependence of the volume dipolar interaction 
we get x = 0. Contributions from the surface of the domain give x = d - 2.  
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Now, if d S 3, the dipolar term increases slower than the exchange and random-field 
terms leaving the Imry-Ma argument unaffected. Thus again d, = 2 as in the non-dipolar 
case. Despite this result we note that the dipole interaction enters equations ( 1 )  and 
(3)  differently: whereas in the RFIM it favours the ordered state here it favours the 
disordered one (with the exception of the two-dimensional case with M perpendicular 
to the layer). Hence we have to expect that there is no longer a universality of the 
low-temperature phases of the RFIM and the DAFF in the presence of dipolar interaction. 

Additional information about the lower critical dimensionality d, can be obtained 
from interface calculations [2,7]. As discussed above, in a dipolar RFIM domain walls 
will be preferentially parallel to the easy axis of magnetisation x I  . In a previous paper 
[8] we have calculated the Hamiltonian for the small distortions y ( x )  of a flat wall 
parallel to x, (x = (x,, . . . , x d - , ) )  

X , , , = $ z r q 2 (  4 l + ~ $ ) [ y q l z + [  dd-'x [oy"' H ( x , y ' )  dy' (4) 

where yq is the Fourier transform of y ( x ) .  7 = g M 2 / T  denotes the relative strength of 
the dipolar interaction and r cc CT the stiffness of the interface. Interaction with the RF 

roughens the wall. Repeating the well known Imry-Ma argument [ l ]  for a bump of 
the wall of height w and of linear extension L,  parallel to x ,  and L parallel to x i ,  
i = 2 , .  . . , d - 1, we have to minimise the total energy both with respect to w and to 
L,  . In this way we get for the width w(L) = ALL, with 

Thus, typical interface fluctuations are long oval-shaped bumps. Comparing ( 5 )  and 
(2) in three dimensions we see that the form of the bumps reflects the cigar shape of 
metastable domains. Note that the energy fluctuations AE - Lx scale with x =  
2( 4' - 1) + ( d  - 2) +$d = i d ,  contrary to the non-dipolar case where x = f( d + 1) .  The 
roughening exponent &jp = i(4 - d )  approaches 1 for d + df. Thus d, = 2 in agreement 
with our above findings. However, &jp is smaller than the non-dipolar result 5 = 3(5 - d )  

The Hamiltonian (4) was found in [8] by inserting a wall configuration S,(x) = 
K ( x d  - y ( x ) )  ( K ( x )  = l,O, -1 for x > ,  =, <0) into the Ginzburg-Landau Hamiltonian. 
Since for a DAFF the dipolar interaction is irrelevant in the limit q = k, (see equation 
( 6 )  below) this should also be the case for the interface Hamiltonian. Hence 5 = f(5 - d ) ,  
A = (H/r)"'  and again df = 2 for the DAFF. 

Breakdown of universality is also found from the critical behaviour. In order to 
be able to perform an expansion around the upper critical dimensionality d , ,  I consider 
now a d-dimensional dipolar interaction in a d-dimensional space. The bare propagator 
of a cp4-field theory corresponding to an king ferromagnet with dipolar interaction is 
Go( q )  = ( r  + q2 + ?q;/ q2)-' .  9 is again a measure of the relative strength of the dipolar 
interaction [9]. Adding a RF it is easy to show that the leading contributions in any 
order of the perturbation theory arise from tree graphs, as in the non-dipolar case 
[lo]. However, because of the ql/lql dependence of G(q), which acts like an additional 
space dimension in all integrals, we get now d, = 5 for the upper critical dimensionality. 
From the same argument it follows that, to lowest order in E, the critical exponents 
of the dipolar RFIM in d = 5 - E are identical to those of the RFIM in d = 6 - E dimensions 
(and hence to those of the pure I M  in d = 4 - E ) .  One should expect that in higher 

~ 7 1 .  
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order in E there is no such simple shift rule because of the complicated direction 
dependence of the integrands in the perturbation theory. 

Next we consider a DAFF for which the Hamiltonian can be written approximately 
as 

with 5, = 5 ddq/(2.r)d. k,  denotes the wavevector of the antiferromagnetic ordering and 
Sr(q )  the Fourier transform of the random part of r originating from the dilution 

&=o 6 r ( q ) S r ( q ’ )  = 27rAS(q+q’). (7) 
For H = Sr = 0, the system ( 6 )  becomes critical at q = k, with Ising critical exponents. 
Switching on Sr (but H = 0 )  new random Ising critical behaviour arises if the specific 
heat exponent a. of the pure model is positive. For H > 0 So includes a non-zero part 
(So)  - H which generates a RF (So)Gr(q).  The leading contributions of the perturbation 
series are again tree graphs with a maximal number of RF insertions. It is easy to show 
that the random bond insertions, which also exist, are irrelevant in the renormalisation 
group sense (diagrams which would yield the same divergencies as the maximal 
divergent RF diagrams, but which contain in addition random bonds, are disconnected 
before the configuration average is taken and therefore do not exist). Actually, a 
non-zero (So)  also produces a S’, term in the effective Hamiltonian, the square of 
which, however, merely renormalises the S4 coupling, since one of the S,  has to be 
non-critical due to momentum conservation. If we include now dipolar interaction 
there is no change of critical exponents, since expanding the term hq: /q2  around q = k, 
does not lead to a critical angular dependence of the propagator for q = k. Thus the 
critical exponents of the dipolar DAFF are those of the non-dipolar RFIM. In particular, 
dc = 6 .  

Experimentally, it is well known that three-dimensional field-cooled RF systems 
exhibit a domain state at low T, despite the fact that the ordered phase is stable. This 
behaviour can be understood theoretically by following up the emergence of metastable 
states when cooling the system through the transition region. Neutron scattering 
experiments yield a correlation length R,( t )  - H-YHr( t ) .  R,( t )  is found by equating 
the driving force Fdriv= cr/R acting on the surface of the metastable domain with the 
pinning force Fpin. Pinning arises mainly from the interaction of the rough domain 
wall with the frozen-in disorder. The maximal pinning force is given by Fpin = TA2/‘ 
[2, 111. Thermal hopping makes pinning on small scales ineffective [ 11,121. Repeating 
the calculation presented in [12] for the dipolar RFIM we get Fpin(t) = 
( H 2 /  T+1’3)/ln( l / ~ ) .  Interpolating between both expressions for the pinning force, we 
get 

Equation (8) predicts a crossover for vH from vH = $/(4- d )  for short times to vH = 2 
for long times. 

For the DAFF Fpin agrees with that for the non-dipolar RFIM [2, 11 ,  121. However, 
the bulk dipolar energy yields a contribution -gM2R-3+x to Fdriv which leads to a 
slower increase of R , ( t )  for small R. 
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